40km 1.25Gb/s CWDM Singlemode SFP Transceiver

<u>Features:</u>

- ¹ Up to 1.25Gb/s data links
- DFB laser transmitter and PIN photo-detector
- ¹ Up to 40km on 9/125μm SMF
- Hot-pluggable SFP footprint
- Duplex LC/UPC type pluggable optical interface
- Low power dissipation
- ¹ Metal enclosure, for lower EMI
- ¹ RoHS compliant and lead-free
- Single +3.3V power supply
- Support Digital Diagnostic Monitoring interface
- Compliant with SFF-8472
- Operating case temperature: 0°C to +70°C

Applications:

- Switch to Switch Interface
- ¹ Gigabit Ethernet
- Switched Backplane Applications
- Router/Server Interface
- Other Optical Links

Product Description:

Florida's Small Form Factor Pluggable (SFP) transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA). The transceiver consists of five sections: the LD driver, the limiting

h through quality

amplifier, the digital diagnostic monitor, the DFB laser and the PIN photodetector.

The module data link up to 40KM in 9/125um single mode fiber.

The optical output can be disabled by a TTL logic high-level input of Tx. Disable, and the system also can disable the module via I2C. Tx. Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access.

PRODUCT SELECTION:

Wavelength	XX	Clasp Color Code	Wavelength	XX	Clasp Color Code
		A) Un	1 4 0 1 0		- 1 7 1
1270 nm	27	Gray	1450 nm	45	Brown
1290 nm	29	Gray	1470 nm	47	Gray
1310 nm	31	Gray	1490 nm	49	Purple
1330 nm	33	Purple	1510 nm	51	Blue
101	1	1 7/2		1	17.
1350 nm	35	Blue	//1530 nm //	53	M Green
			0		
1370 nm	37	Green	1550 nm	55	Yellow
1390 nm	39	Yellow	1570 nm	57	Orange
1410 nm	41	Orange	1590 nm	59	Red
1430 nm	43	Red	1610 nm	61	Brown

I. Pin Descriptions

Pin	Symbol	Name/Description					
1	VEET	Transmitter Ground (Common with Receiver Ground)					
2	TFAULT	Transmitter Fault. Not supported.					
3	TDIS	Transmitter Disable. Laser output disabled on high or open.	2				
4	MOD DEF(Module Definition 2. Data line for Serial ID.	3				
5	MOD_DEF(Module Definition 1. Clock line for Serial ID.	3				
6	MOD_DEF(Module Definition 0. Grounded within the module.					
7	Rate Select	No connection required					
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.					
9	VEER	Receiver Ground (Common with Transmitter Ground)	1				
10	VEER	Receiver Ground (Common with Transmitter Ground)	1				
11	VEER	Receiver Ground (Common with Transmitter Ground)	1				
12	RD-	Receiver Inverted DATA out. AC Coupled					
13	RD+	Receiver Non-inverted DATA out. AC Coupled					
14	VEER	Receiver Ground (Common with Transmitter Ground) 1					
15	VCCR	Receiver Power Supply					
16	VCCT	Transmitter Power Supply					
17	VEET	Transmitter Ground (Common with Receiver Ground)	1				

18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	VEET	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 3. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V.MOD_DEF (0) pulls line low to indicate module is plugged in.
- 4. This is an optional input used to control the receiver bandwidth for compatibility with multiple data rates (most likely Fiber Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with $> 30 \text{k}\Omega$ resistor. The input states are:

□ Low (0 – 0.8V)	: Reduced Bandwidth
\Box (>0.8, < 2.0V)	: Undefined
\Box High (2.0 – 3.465V)	: Full Bandwidth
Open	: Reduced Bandwidth

5. LOS is open collector output should be pulled up with 4.7k - 10kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

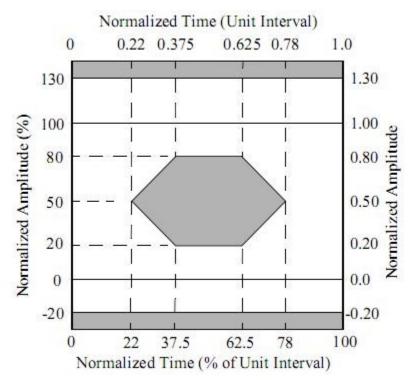
<u> Absolute Maximum Ratings:</u>

Parameter	Symbol	Min.	Typ.	Max.	Unit	Note
Storage Temperature	Ts	-40		85	°C	
Storage Ambient Humidity	HA	5		95	%	
Power Supply Voltage	VCC	-0.5		4	V	

Signal Input Voltage	-0.3	Vcc+0.3	V	
Receiver Damage Threshold	5		dBm	

Figure 2. Pin out of Connector Block on Host Board

Recommended Operating Conditions:


Parameter	Symbol	Min.	Typ.	Max.	Unit	_ Note
						(TM)
Case Operating Temperature	Tcase	0		70	°C	
						Non-
Ambient Humidity	HA	5		70	%	condensing
				(GF		
Power Supply Voltage	VCC	3.13	3.3	3.47	V	
Power Supply Current	ICC			300	mA	
Power Supply Noise						
Rejection				100	mVp-p	100Hz to 1MHz
			1250/			TX Rate/RX
Data Rate	/		1250		Mbps	Rate
04.1000	1 7/	A 44		1.1	1.7.	4
Transmission Distance	yr w	VVV	MAN O	40	KM	7
	-		0			/
Coupled Fiber		Sing	le mode fil	er		9/125um SMF

Specification of Transmitter:

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Average Output Power	POUT	-5		0	dBm	
Extinction Ratio	ER	9			dB	
Center Wavelength	λC	(1XX0)-	$\begin{bmatrix} 1XX \\ 0 \end{bmatrix}$	$(1XX0)+\Delta$	nm	DFB Laser
		$\Delta\lambda$				Note (1)
Side Mode Suppression Ratio	SMSR	30			dB	, ,
Spectrum Bandwidth(- 20dB)	σ			1	nm	
Transmitter OFF Output Power	POff			-45	dBm	
Differential Line Input	RIN	90	100	110	Ohm	
Impedance						
Jitter P-P	tJ			120	ps	Note (2)
Output Eye Mask	Comp	liant wi		Note (3)		
			(class			

Note (1): "XX" is: 27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59 and 61; " $\Delta\lambda$ " is 7.5

Note (2): Measure at 2^7-1 NRZ PRBS pattern Note (3): Transmitter eye mask definition

Specification of Receiver:

Parameter						
	Symbol	Min.	Typ.	Max.	Unit	Note
Input Optical Wavelength						
	λIN	1270		1610	nm	PIN-TIA
Receiver Sensitivity						
	PIN			-24	dBm	Note (1)
Input Saturation Power						
	PSAT	0			dBm	
(Overload)						
Los Of Signal Assert						
Los of Signal Fissort	PA			-25	dBm	
Los Of Signal De-assert	1					
	PD	-38			dBm	Note (2)
LOS Hysteresis						
	PA-PD	0.5	2	6	dB	

Note (1): Measured with Light source 1XX0 nm, ER=9dB; BER =<10^-12 @PRBS=2^7-1 NRZ

Note (2): When LOS de-asserted, the RX data+/- output is High-level (fixed)

VI. Electrical Interface Characteristics:

	Symbol	Min.	Typ.	Max.	Unit	Note	
Parameter							
	Transm	itter					
	ICC			A	mA	Note (1)	
Total Supply Current						. ,	
	VDISH	2		Vcc+0.3	V		
Transmitter Disable Input-High							
	VDISL	0		0.8	V		
Transmitter Disable Input-Low							
	VDISL	2		Vcc+0.3	V		
Transmitter Fault Input-High							
	VTxFH	0		0.8	V		
Transmitter Fault Input-Low							
Receiver							
	ICC			В	mA	Note (1)	
Total Supply Current							
LOSS Output Voltage-High	VLOSH	2		Vcc+0.3	V	LVTTL	

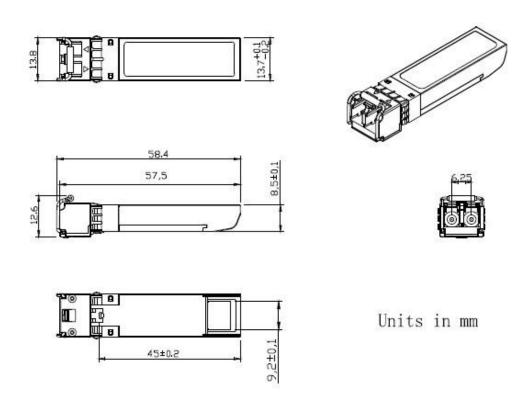
	VLOSL	0	0.8	V	
LOSS Output Voltage-Low					

Note (1): A(TX) + B(RX) = 300mA (Not include termination circuit)

<u>Digital Diagnostic Functions:</u>

Florida's Small Form Factor Pluggable (SFP) transceivers support the 2-wire serial communication protocol as defined in the SFP MSA. It is very closely related to the E2PROM defined in the GBIC standard, with the same electrical specifications. The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

Additionally, Florida SFP transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.


The SFP MSA defines a 256-byte memory map in E2PROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated

by the host. The positive edge clocks data into the SFP transceiver into those segments of the E2PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

Digital diagnostics for the Small Form Factor Pluggable (SFP) transceivers are internally calibrated by default.

Mechanical Specifications (Unit: mm):

Regulatory Compliance:

Feature	Reference	Performance
Electrostatic discharge	IEC/EN 61000-4-2	Compatible with standards
(ESD)		
Electromagnetic	FCC Part 15 Class B EN 55022	Compatible with standards
Interference (EMI)	Class B (CISPR 22A)	
Laser Eye Safety	FDA 21CFR 1040.10, 1040.11	Class 1 laser product
	IEC/EN 60825-1, 2	
Component Recognition	IEC/EN 60950 , UL	Compatible with standards
ROHS	2002/95/EC	Compatible with standards
EMC	EN61000-3	Compatible with standards